Previous article
Next article

L’idea di funzione #1

di Antonio Sparzani
funzioni1

La parola funzione fa parte del linguaggio parlato. Che cosa significa, di preciso? Per capire un’idea occorre soppesarla a lungo, bisogna guardarla da tutti i lati possibili, aprirla, provare a usarla e infine essere in grado di criticarla. In ultimo bisogna arrivare a mangiarla, così cantava Giorgio Gaber vari anni fa.
Ora io voglio raccontarvi, in quattro passi – no, non nel delirio – la storia della formazione di questo concetto, ormai onnipervasivo non solo nelle matematiche e nelle scienze in generale, perché credo che seguendone la storia inevitabilmente si capisca meglio cosa c’è dentro adesso.
E quel che c’è dentro adesso è emerso un po’ alla volta: è il risultato di una serie di slittamenti di significato – cui anche la matematica ha contribuito – e che parte dal verbo latino fungor, che originariamente indica l’adempiere un dovere, una mansione: consulatu fungi nel latino classico significa “esercitare il consolato”.

A. Primo passo: una conseguenza di questa prima accezione è che si può usare la parola per dire che si esercita una mansione di un altro, se ne ricopre il ruolo: tipicamente, sempre nel latino classico, fungi maternis vicibus significa “far le veci della madre”. Da questa direzione di significati deriva l’italiano fungere che incorpora già ‘le veci’: “fungere da sostegno” sta per “fare quello che fa un sostegno”, anche se lo scopo originario non era quello, “fungere da madre” significa esercitare le mansioni della madre pur non essendo la madre, si può equivalentemente anche dire “fare la funzione di un sostegno”, o “della madre”, rispettivamente. Dunque la parola funzione indica qui un passaggio di azione da una cosa ad un’altra, o da una persona ad un’altra, una sostituzione, un prender su di sé la figura di qualcos’altro. Secondo la Costituzione italiana nel caso di impedimento del capo dello stato, il presidente del Senato ne assume le funzioni: vuol dire che egli, pur non essendo il capo dello stato eletto, ne assume il ruolo, prende su di sé l’onere – e l’onore – della carica.

B. Secondo passo: a questo punto si è verificato un nuovo interessante spostamento di significato all’interno della storia della matematica, fin dagli ultimi decenni del secolo XVII.
In una prima fase, che si può far simbolicamente coincidere con l’opera di Isaac Newton (i suoi Principia sono del 1687), l’idea che una qualche grandezza possa dipendere da un’altra, possa cioè variare al variare di un’altra, è limitata al caso in cui quest’ultima grandezza sia il tempo; Newton non usa ancora la parola funzione, ma usa la parola latina fluentes per indicare queste entità che hanno la caratteristica di cambiare col tempo. La parola funzione, o per meglio dire la sua versione latina functio (pur presente nel latino classico), appare per la prima volta nella storia della matematica in un manoscritto di Gottfried von Leibniz del 1673 intitolato Methodus tangentium inversa, seu de functionibus, nel quale ancora si parla del calcolo di certe speciali caratteristiche di una curva piana, quali la sottotangente, la sottonormale e altre (poco importa qui la loro definizione precisa), che rivestono un certo ruolo nell’andamento della curva e dunque ancora la parola rimane nell’alveo del significato di ‘ruolo’.
Leibniz si serve invece, per indicare la dipendenza dell’ordinata di un punto della curva dalla sua ascissa, della parola relatio, ‘relazione’. Ma nel prosieguo del manoscritto, ecco che l’autore si serve della parola functio per indicare appunto in generale queste varie caratteristiche della curva al loro variare lungo di essa, in quanto il suo scopo, nel manoscritto, è quello di risalire dal variare di queste caratteristiche alla forma della curva – di ricavare dalle functiones la relatio; nello stesso senso allargato Leibniz continuerà ad usare la parola in altri lavori del 1692 e del 1694.

C. Terzo passo. Occorre guardare a un personaggio chiave immediatamente successivo a Leibniz, il matematico e fisico svizzero Johann Bernoulli (1667-1748). È a lui che si deve la prima definizione formale di che cosa sia una funzione in quanto quantità composta di grandezze variabili:

“Definizione. Si chiama funzione di una grandezza variabile una quantità composta in una maniera qualsiasi a partire da questa grandezza variabile e da costanti”.
[On appelle fonction d’une grandeur variable une quantité composée de quelque manière que ce soit de cette grandeur variable et de constants]

L’aspetto interessante di questa definizione, oltre a quello di essere un primo tentativo di formalizzare la parola funzione all’interno delle matematiche, è quello di identificare una funzione con una espressione formale. Ad esempio
x−1; x^2 ; 3x^5 − x^2 ecc.
Dunque, in questa prima fase della ricerca di cosa sia funzione, si adotta un atteggiamento tipicamente connotativo, intensivo: per assegnare una funzione occorre che sia data una espressione che permetta di calcolarla. Essa non è però certamente unica, ad esempio le espressioni (x − 1)(x + 1) e x^2 – 1 chiaramente diverse in quanto espressioni, danno luogo agli stessi valori: per x = 2 forniscono entrambe il valore 3, per x = −1 danno entrambe il valore 0 e lo stesso accade per qualsiasi altro valore attribuito alla x; e quindi appare un aspetto poco soddisfacente: secondo la definizione di Bernoulli esse sono funzioni diverse, in quanto composizioni di simboli diverse; tuttavia si vorrebbe in maniera naturale identificarle in quanto portano appunto agli stessi numeri a partire dagli stessi numeri. Questo spinge ad adottare una definizione di funzione che badi non tanto alla sua espressione formale, ma al risultato che si ottiene per ogni valore della variabile.
Come vedrete nella prossima puntata.

2 COMMENTS

  1. Sparz, aspetto con grande interesse la seconda puntata. Ecco un uso intelligente dell’etimologia, scienza affascinante quando viene usata per spiegare il senso attuale delle cose, e molto meno affascinante quando serve unicamente a dire, p. es. che la radice di “salto” è il greco “allomai”.

Comments are closed.

articoli correlati

Il silenzio è cosa viva

di Giorgio Morale La prosa dei poeti: Il libro Il silenzio è cosa viva di Chandra Livia Candiani (Einaudi 2018,...

Cosa ne dirà la gente? Festa di Nazione Indiana 2018

Vi aspettiamo alla Festa di NazioneIndiana 2018! Quest'anno si terrà sabato 27 ottobre dalle 16.30 e domenica 28 ottobre dalle 10 alle 12 ed è stata organizzata in collaborazione con l'Associazione C.A.R.M.E.

Sistema #1

di Antonio Sparzani Sistema, che straordinaria parola nella lingua italiana e nelle altre lingue vicine alla nostra: la sua etimologia...

[1938-1940] ILIO BARONTINI “vice-imperatore” dell’Abissinia

di Orsola Puecher

In questo 25 aprile 2018, che ancora pervicacemente mi sento in dovere di “commemorare” contro il rigurgito di tutti i fascismi e razzismi, manifesti o striscianti che siano, nel raccontare l’avventurosa e straordinaria missione di sostegno alla resistenza etiope compiuta dal 1938 al 1940 da Ilio Barontini...

una rete di storie CALUMET VOLTAIRE cabaret letterario


Cose mai viste (le riviste)
di Francesco Forlani
Ci saranno performance, musica improvvisata, reading, convivialità, conversations, preferendo questo termine, civile, a quello di dibattito generalmente stantio come l’acqua nelle caraffe posate sul tavolo dei relatori. Le feste di Nazione Indiana sono state e saranno questo. A Fano faremo come a Milano, Mesagne, Pistoia, Torino, Parigi, Fos’di Novo, Bolzano, dunque non mancate.

una rete di storie festa di Nazione Indiana 2017

Nella sua storia lunga ormai ben 14 anni Nazione Indiana ha pubblicato più di 10.000 articoli di critica,...
antonio sparzani
antonio sparzani
Antonio Sparzani, vicentino di nascita, nato durante la guerra, ha insegnato fisica per decenni all’Università di Milano. Il suo corso si chiamava Fondamenti della fisica e gli piaceva molto propinarlo agli studenti. Convintosi definitivamente che i saperi dell’uomo non vadano divisi, cerca da anni di riunire alcuni dei numerosi pezzetti nei quali tali saperi sono stati negli ultimi secoli orribilmente divisi. Soprattutto fisica e letteratura. Con questo fine in testa ha scritto Relatività, quante storie – un percorso scientifico-letterario tra relativo e assoluto (Bollati Boringhieri 2003) e ha poi curato, con Giuliano Boccali, il volume Le virtù dell’inerzia (Bollati Boringhieri 2006). Ha curato anche due volumi del fisico Wolfgang Pauli, sempre per Bollati Boringhieri e ha poi tradotto e curato un saggio di Paul K. Feyerabend, Contro l’autonomia, pubblicato presso Mimesis. Ha curato anche il carteggio tra W. Pauli e Carl Gustav Jung, pubblicato da Moretti & Vitali nel 2016. Scrive poesie e raccontini quando non ne può fare a meno.